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Abstract—A novel adaptive scheme for wireless push 
systems is presented in this paper. In this wireless 
environment two entities play the most important role: the 
server side and the client side that is connected to the 
system. The server side is responsible to broadcast an item 
per transmission in order to satisfy the clients’ requests. 
The performance of the server side depends on item 
selections. Hence, the server broadcasts an item and the 
clients are satisfied if the transmitted item was the desired 
one. In this work, a set of learning automata try to 
estimate the client demands in a distributed manner. More 
specifically, an autonomous learning automaton is utilized 
on each client group, since the clients are gathered into 
groups based on their location. The output of each 
automaton is combined in order to produce a well-
performed transmission schedule. Concurrently, a round 
robin phase is adopted, giving the opportunity to the non-
popular items to be transmitted. In this manner, the 
various client demands are treated fairly. The introduced 
technique is compared with a centralized adaptive scheme 
and the results indicate that the proposed scheduling 
framework outperforms the centralized one, in terms of 
response time and fairness. 
 
Index Terms—Distributed Learning Automata, Fairness, 
Locality of Demand, Wireless Push Systems.  
  
 

I.  INTRODUCTION 
 

Data broadcasting has emerged as an efficient way of 
delivering information over wireless networks (i.e. traffic 
information, weather information, news distribution). In such 
applications, client preferences are usually overlapping and 
the broadcast of a single information item will likely satisfy a 
large number of clients. The three major approaches for 
designing broadcast schedules is the pull, the push and the 
hybrid one. In pull systems, (e.g. [1, 2, 3, 4]), data items are 
broadcast in response to explicit requests received from 
clients. Pull can be used either for unicast or for broadcast. 
When used for broadcast, pull is also referred to as interactive 
or on-demand broadcast [5]. 

The advantage of these systems is their adaptive to dynamic 
client demands. Though, they are not scalable for large client 
populations as client requests will either collide with each 
other or saturate the server. In push systems (e.g. [6, 7, 8]), the 
server is considered to have an a-priori estimation of the client 
demands and schedules its broadcasts according to these 

estimates of the demand per information item. On the contrary 
to the pull approach, the “pure” push systems provide high 
scalability and client hardware simplicity but are unable to 
operate efficiently in environments with a-priori unknown and 
dynamic client demands.  

The adaptive push system of [9, 10, 11] though, achieves 
efficient operation in such environments using a learning 
automaton [12] at the broadcast server in order to provide 
adaptivity. The server conserves a database of the items that 
are broadcast while the learning automaton contains the 
server’s estimate of the demand probability for each item. 
After each item broadcast, every satisfied client sends to the 
server a feedback. Using the clients’ feedbacks, the server’s 
automaton continuously adapts to the overall client population 
demands in order to reflect the overall popularity of each data 
item. Finally, hybrid systems (e.g. [13, 14, 15]) try to combine 
the benefits of the pure-push and pure-pull approaches. In this 
paper, we will focus on the adaptive push-based approach of 
[9]. 

The adaptive push system of [9] uses a single centralized 
automaton to adapt its scheduled broadcasts to the clients’ 
demands. Though, most applications are characterized by 
locality of demand which means that clients are gathered into 
groups, each one located at a different region. Members of 
each group have similar demands for information items, 
different from the demands of clients at other groups (e.g. 
traffic information) while the size of each group (number of 
clients per group) varies as there are groups of large 
population and groups of small one. Thus, a centralized 
automaton is not able to target on the explicit needs and 
features of each group as it considers all the clients as a single 
group.  

The proposed scheme alters the operation of designing the 
broadcast schedules by applying a distributed learning 
automata scheme [16] instead of a centralised one. The 
proposed DIstributed Automata Scheme (DIAS) framework 
targets on accurate estimations regarding the clients’ demands 
via a distributed operation of the applied automata. In this 
manner, the scheme takes into account the locality of item 
demands per group. Furthermore, the novel scheme focuses on 
each group separately taking into consideration the size of 
each group, regarding the choice of the forthcoming 
broadcasts. This means that the server side tries to determine 
the client demands per group by applying a learning 
automaton on each group of clients distinctly, contrary to a 
unique centralized learning automaton for the whole system. 
This design leads to a more sensitive framework than the 



centralized one, since the client demands are treated with an 
efficient and fair way. Simulation results indicate that the 
distributed nature of the proposed scheme results in better 
performance in terms of response time and fairness than the 
centralised one. 

The distributed automata have been widely used in the 
literature. Indicatively, it is mentioned their use on algorithms 
for solving multi-agent markov decision processes [17], for 
learning minimum delay paths in service overlay networks 
[18], in distributed fuzzy logic processor training [19] and for 
function optimization problems [20]. 

The remainder of the paper is organised as follows: Section 
II presents previous schemes for the push approach, section III 
analyzes the system architecture and presents the proposed 
scheme. Simulation results are presented in Section IV. 
Finally, Section V concludes the paper.  
 

II.  RELATED WORK 
The method for data broadcasting in push systems presented 

in [7] is based on two statements that optimize the system 
performance: (a) schedules with minimum overall mean 
access time are produced when the intervals between 
successive instances of the same item are equal, (b) under the 
assumption of equally spaced instances of the same items, the 
minimum overall mean access time occurs when the server 
broadcasts an item i with frequency being proportional to the 
factor ( )((1 ( )) (1 ( )))i i i ip l E l E l+ − ,  where pi is the 
demand probability for item  i, li is the item’s length, and E(li) 
is the probability that an item of length li is received with an 
unrecoverable error.  

The algorithm of [7] operates as follows: The server 
contains a database of K information items, and p is the vector 
of the estimated probability demand per item. Assuming that t 
is the current time and T(i) is the time when item i was last 
broadcast, for each broadcast, the server selects to transmit the 
item i that maximizes the cost function (objective function): 

 2( ) ( ( )) (1 ( )) (1 ( )) ,  1 ii
i i

i

p
CF i t T i E l E l K

l
= − + − ≤ ≤    (1) 

where pi is the demand probability for item  i, li is the item’s 
length, E(li) is the probability that an item of length li is 
received with an unrecoverable error, T(i) is initialized to -1 
and if the maximum value of CF(i) is given by more than one 
items, the algorithm selects one of them arbitrarily. Upon the 
broadcast of item i at time t, T(i) is changed so that T(i)=t. 

The main disadvantage of this method is its lack of 
adaptivity and thus its inefficiency in environments with a-
priori unknown client demands. The adaptive push system of 
[9] achieves efficient operation in such environments using a 
single Learning Automaton at the broadcast server in order to 
provide adaptivity. After each item broadcast, every satisfied 
client sends to the server a feedback (“vote”). Using the client 
feedbacks-votes, the server’s automaton continuously adapts 
to the overall client population demands in order to reflect the 
overall popularity of each data item. The operation of the 
centralised learning automaton is given by the equation below: 
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 It holds that , a (0,1) L ∈ and , 
where K is the number of the server’s items, p

[ ]' 1, ...,( ) (a,1),  i Kp k i∈ ∀ ∈
’ is the server’s 

estimated demand probability vector, L is a parameter that 
governs the speed of the automaton convergence and the role 
of parameter a is to prevent the probabilities of unpopular 
items from taking values in the neighbourhood of zero in order 
to increase the adaptivity of the automaton. Upon reception of 
the clients’ feedbacks, this number of feedbacks is normalized 
in the interval of [0,1]. 

( ) 1b k
number of  received feedbacks

total number of  clients
= −  is the system 

environmental response that is triggered after the server’s kth 
transmission.  

In the remainder of the paper this method will be referred as 
the “centralized system” and will be used for the comparison 
and validation of the DIAS. 
 

III.  THE DISTRIBUTED AUTOMATA SCHEME (DIAS) 

A. The System Architecture 
The system consists of a base station and mobile clients. 

The client topology is characterized by locality of demand. P 
denotes the client population and G the number of groups that 
are gathered into. The members of each group may demand M 
information items. Clients are considered equipped with GPS 
receivers. As nowadays many PDAs are typically equipped 
with GPS receivers, there is no need for complex client 
equipment [21, 22, 23, 24, 25].  

The base station consists of one omni-directional antenna 
and a database of G×M different items. The server side is also 
equipped with G distributed automata (one for each group) in 
order to adapt the broadcast scheduling to the explicit group 
demands. The base station broadcasts the server’s data items 
while clients respond (“vote”) to the server’s broadcasts. 
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Fig. 1. The system architecture. 



For the uplink communication, a CDMA coding has been 
chosen [26, 27]. After the broadcast of an item that has been 
expected from a client, the client’s software application sends 
automatically its “vote” (i.e. one bit) to the base station using a 
user-specific high-speed code (Long code). At the receiver end 
(base station), signals are separated by using a correlator (rake 
receiver) which only accepts signals energy from the specific 
client’s long code and despreads its spectrum. Other co-user 
signals remain spread because their spreading algorithm is 
uncorrelated with the desired signal’s algorithm and they 
appear as noise.  

Broadcasts are organized into transmission frames. Each 
frame comprises of three phases, the learning phase, the 
calculation phase and the schedule phase. The system 
architecture is depicted in Fig. 1. 

 
 
B.  The Learning phase 
 
Each Learning Automaton contains the server’s estimate 

,i gp′  of the demand probability ,i gp  for each item i among the 
set of the items that the server broadcasts for the specific 

group g. Thus, for each group g, it holds that ,
1

' 1
M

i g
i

p
=

=∑ , 

where M is the number of items that refers to each group. 
During the learning phase, the broadcast follows a round 

robin manner sending each item once. Hence, in this phase, 
the scheme gives to the clients the opportunity to be satisfied 
at least once per frame. This action improves the fairness 
factor of the system operation. The server executes GxM 
broadcasts sending each item once without taking into account 
the server’s estimate ,i gp′  of the demand probability and thus 
balancing the percentage of broadcasts at each group. Figure 2 
depicts the learning phase in system with two groups. 
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Fig. 2. The learning phase 
 
After the transmission of item i  of group g, each satisfied 

client transmits a feedback (e.g. one bit), using Code Division 
Multiple Access (CDMA) as described in subsection III.A.  

After the reception of the feedbacks, the base station 
decodes them and the server updates the distributed demand 
probability vector gp′  according to the probability updating 
scheme that is described below.  

When there are satisfied clients, the probability of the 
transmitted item i increases while the probabilities of all the 
rest items decrease. Considering that the server’s  
transmission is item i of group g, the probability vector

th
k

gp′  is 
updated according to equation (3): 
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where [ ]'
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( ) 1
   

    g k
number of satisfied clients of g

b
number of clients of g

= −
 , L is a parameter 

that governs the speed of the automaton convergence while 
parameter a prevents the probabilities of unpopular items from 
taking values around zero, as some items even if unpopular 
may be demanded by some clients. The  parameter is the 
system’s environmental response of group g after the 
reception of the client feedbacks of group g. A value of   
that equals one represents the case where no client feedback is 
received.  

( )g kb

( )g kb

The server is aware of the population of each group g 
using the following mechanism: The server, which has a priori 
knowledge of the geographic locations (co-ordinates) where 
its services are offered, sends one control packet for each one 
of these locations, asking of the clients that belong to this 
location to send back a feedback. The client’s GPS receiver 
detects its co-ordinates and the client sends its feedback as an 
answer to the control packet that refers to its area. Then, the 
server, using its long-code database, decodes the votes that are 
the answers to each control packet and builds the groups based 
on the decoded votes that received from each area.  

A vector F of size equal to the number of groups G is 
considered. After each broadcast, the number of received 
feedbacks from the group g is added in F(g). At the end of the 
learning phase, the value of the mean number of feedbacks per 
group is stored in the 'F vector in order to be used for the 

calculation phase as follows ' g

g

F
F

M
= . 

 
C. The calculation phase 
 
The number of broadcasts for each group of the next phase 

is formed based on the formula below: 
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∑
,   where gS is the number of the next 

broadcasts dedicated to each group.  
Based on the formula above the GxM broadcasts of the next 
phase are distributed to the groups according to the proportion 



of the mean number of feedbacks per group to the total 

number of feedbacks (
1

'
G

g
i

F
=
∑ ).  

 

 

 

BS

server

feedback 2(A)

feedback M(A)

[ feedback1(A), 
feedback2(A),…,feedbackM(A) ]

Group A feedback 1(A)

...

Group Efeedback 1(E)

feedback M(E)

feedback 2(E)

...
Calculates the 

number of 
broadcasts for 
each group for 
the next GxM 
broadcasts, 

i.e. 

S1 = …, S2 = …,
,…,   SG = …

[ feedback1(E), 
feedback2(E),…,feedbackM(E) ]

 
 
 
Fig. 3.  The calculation phase. 
 

D. The schedule phase  
 

In this phase, the broadcasts are scheduled based on the 
previously calculated S vector. According to S vector, a 
number of broadcasts equal to sum(S) are scheduled. The 
scheduling algorithm is defined as follows:  
 
 
Scheduling Algorithm 
 
 
//begin of scheduling algorithm 
 
while (sum(S)>0) 
        maximum = max(S); 
 
       -  selected group = the index of maximum in vector S 
 
       -  broadcast to the “selected group”  the item i that   
          maximizes the cost function CF presented below 
 
        - update  selected groupp′   

 
         - S(selected group) = S(selected group) – 1 
 
 end while 
 
// end of the scheduling algorithm 
 

 
The server selects to broadcast to the “selected group” the 

item  that maximizes the cost function CF(i) [7, 9]  i
 

2
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where T is the current time, R(i) is the time when item i was 
last broadcast,  is the server’s estimated  demand 
probability for item  i, l

'
,i gp

i is the item’s length,  E(li) is the 
probability than an item of length li is received with an 
unrecoverable error and M is the number of the data items of 
group g. For items that have not been previously broadcast 
R(i) is initialized to -1.  

Figure 4 displays the schedule phase as described above in 
system with two groups. 
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Fig. 4.  The schedule phase. 
 

IV. THE SIMULATION ENVIRONMENT 

A. Simulation Environment 
The server contains a database of K=G x M. the item length 

l is considered to be equal to the unit for each item for 
simplicity reasons, as the item length is not an affecting issue 
for the distributed simulation environment. A population of P 
clients is considered. Clients are grouped into G groups with 
each group being located at a different region and having 
different item demands. In order to model groups of clients 
with different group sizes, the size of each group is computed 
via the Zipf distribution. Thus, the number of clients in group 
x, Size(x), 1 x G≤ ≤ , is:  

1
( )    Size x c P

x

θ
= ⋅⎛ ⎞

⎜ ⎟
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      (5)  
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,  1..
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k

c k

k

θ= ∈
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⎜ ⎟
⎝ ⎠

∑
G  and θ  is a parameter 

named skew coefficient. For 0θ = , the Zipf distribution 
produces equally-sized groups while for large values of θ , the 
Zipf distribution produces increasingly skewed patterns.  

Any client belonging to group x is interested in the same 
subset  xK  of server’s data items. All items outside this subset 
have a zero demand probability at the clients of the group. 
Moreover, [ ]1 2 1, 2  1.. ,  x1 2 , x xK x x G xK ∀ ∈ ≠≠ , which 
means that there are not any common demands between any 
two clients belonging to different groups. 

In each subset, the client demand probability  for each 
item in place x in that subset, is computed also via the Zipf 

xp



distribution. This distribution has also been used in other 
papers that deal with data broadcasting [6, 7, 9, 11] 
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number of items that comprises the subset 

xNumK

xK ,  and 1θ  is the 
skew coefficient. After each broadcast, the satisfied clients 
(the ones that were waiting for the broadcast item) refresh 
immediately their demands while the “unsatisfied” clients 
persist to their demands until they get satisfied. Finally, a 
number of G distributed automata are utilized at the server, as 
they are described in section III.  

The broadcasts are subject to reception errors, with 
unrecoverable errors per instance of an item occurring, 
according to a Poisson process with rate λ . Thus, 

 1E e λ−= − is the probability that an item is received with an 
unrecoverable error. 

The simulation runs until the server broadcasts  
items. The overhead due to the duration of the feedbacks and 
the signal propagation delay is defined via the parameter 

. 

Broad

Ouh
The DIAS is compared with the centralized system of [9] 

where the server uses one centralised learning automaton to 
schedule its forthcoming broadcasts. 

The performance of the compared schemes is measured in 
terms of response time and percentage of broadcasts per 
group. The response time is the mean time that passes until the 
client receives one item that expects and is defined as follows: 

   
 = 

    j
j

total time of  the Broad broadcasts
ResTime

number of satisfied broadcasts of  client
, where 

. In this manner, the response time of the entire 

system is given by 

1 j P≤ ≤
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P

j
j
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P
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. Moreover, the percentage 

of broadcasts per group is defined as the number of the 
server’s broadcasts of items that concern each group upon the 
total number of the server’s broadcasts and is given by: 

100j
j

num of  broadcast items of  group  
PercBroad

Broad
= ⋅ , where 

. 1 j G≤ ≤

B. Simulation Results 
The experiments are performed in a simulator coded in 

Matlab. The simulation results presented in this section are 
obtained with the following values to the parameters: P=1000, 
Broad=100000, , 310Ouh −= 0.1λ = , L=0.15 and a= 410 − . 
Table 1 summarizes the characteristics of the networks that 

have been simulated while figures 5-14 depict the simulation 
results of these networks. 
 

Table 1. The characteristics of the different simulation 
environments. 

Network G M θ  1θ  
N1 [5...20] 5 0.9 0.5 
N2 [5…20] 180/G 0.9 0.5 
N3 10 [5…20] 0.9 0.5 
N4 20 5 [0.0...1.0] 0.5 
N5 20 10 0.9 [0.0…1.5] 

 
 

Figure 5 depicts the response time of network N1 as the 
number of groups varies. In these figures the number of items 
per group (M) is stable and equal to 5, while the number of the 
groups that the clients are gathered into takes values in the 
interval of 5 to 20. For instance, when the number of groups is 
20, the total items are 5×20 = 100. Obviously, the proposed 
DIAS scheme achieves better performance than the centralised 
one for different number of groups. 
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Fig.5. The response time for network N1. 
 

In Figure 6, the percentage of broadcasts per group of the 
same network is presented for three different values of system 
groups.  In all the three cases, the distributed scheme seems to 
be more fair than the centralized one in terms of percentage of 
broadcasts per group. In the centralized system, the large 
populated groups (e.g group 1 at fig.6.a, 6.b, 6.c) have much 
higher percentage of broadcasts at the expense of the small 
ones which have very low percentage of broadcasts. For 
example, the percentage of the large group 1of fig 6.a. reaches 
the 35% of the total server’s broadcasts while the percentage 
of group 10 which is the smaller one is only 2.5%. In the 
distributed system, the server’s broadcasts are scheduled in a 
more fair matter. This mainly happens because the learning 
phase is utilized according to a round robin manner. 
Especially, the values of the percentage per group which are 
very low at the centralized system increase, whereas the ones 
that are high decrease. Thus, all the values of the percentage 
approach to each other and the system becomes more fair. 
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Fig.6. Percentage of broadcasts per group for number of 
groups equal to (a) 5, (b) 10, (c) 15 for network N1.  
 

Figure 7 shows the response time of network N2 versus 
different values of G (different number of groups) in an 
environment where the total number database items is stable 
and equal to 180 independent of the number of groups. Here, 
the number of items per group M is equal to 180/G. Thus, for 
number of groups equal to 5, 10 and 15, the number of items 
per group is 36, 18 and 12 respectively. The response time of 
the proposed system is significantly lower then that of the 
centralized one. It is also noticeable the fact that the response 
time of the distributed system is stable and independent of the 
number of groups whereas the response time of the centralized 
one increases with the raise of  the number of groups. 
Apparently, for large values of groups, the centralized system 
finds difficulty in adapting to the varying demands of many 
groups. Contrary, the distributed system achieves more 
accurate estimations of the client demands independent of the 
number of groups as each automaton targets on a specific 
group. 
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Fig.7. The response time for network N2 . 
 

Figure 8 shows the percentage of broadcasts per group of 
the same network N2 for three values of G (G=5, G=10, 
G=20). In all the three cases, it stands that the distributed 
scheme is more fair than the centralized one as the values of 
the percentage of the groups try to approach to each other. 
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 Fig.8. Percentage of broadcasts per group for number of 
groups equal to (a) 5, (b) 10, (c) 20 for network N2.  
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Fig.9. The response time for network N3. 
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Fig.10. Percentage of broadcasts per group for network N3.  
 

Figures 9 and 10 confirm the superiority of the proposed 
scheme at the response time as well as the fairness in terms of 



the percentage of broadcasts for different values of M (number 
of items per group). It is worth mentioning that the 
performance in terms of percentage of broadcasts per group is 
the same for each value of M at both schemes. Thus, it has 
been chosen indicatively the case of M=10 to be presented.  
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Fig.11. The response time for network N4. 
 
Figure 11 depicts the response time versus different values 

of the group size skew coefficient θ  of network N4. Observing 
the figures, it is obvious that as the θ  increases the centralized 
system follows a growing progress, while the distributed 
scheme follows a significant decrease. More specifically, for 
small values of θ  (θ <0.4) where the group sizes have very 
close values, the two systems have similar behavior with the 
centralized system excelling marginally. Though, for values of 
θ  greater than 0.4, the Zipf distribution produces increasingly 
skewed patterns. In such a realistic environment with unequal 
group sizes, the performance of the distributed system 
outperforms that of the centralized one. Indeed, as the values 
of θ  increases, the performance of the distributed system is 
enhanced, a fact that does not stand for the centralized system 
where the performance is degraded.  
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Fig.12. Percentage of broadcasts per group for group size 
skew coefficient θ  to (a) 0.4, (b) 1.0 for network N4 . 

   

In Figure 12, it is presented the percentage of broadcasts 
per group of N4 for two values of θ  (θ =0.4, θ =1.0). In both 
cases, it holds that the distributed scheme is more fair than the 
centralized one. This phenomenon can be explained as the 
values of the percentage broadcasts of the groups try to 
approach to each other in compare with the centralized one 
where the first large group has the majority of the server’s 
broadcasts at the expense of the other ones. It is worth 
mentioning that the lack of fairness at the centralized scheme 
is more intense for large values of θ  because the group size is 
intensively skewed. The above is revealed in Figure 12.b. 
where θ =1.0 and the percentage of the first group with 
Size(1) = 278 is 32% while the percentage of the last one with 
Size(20) = 14 is 1.2%. For the distributed system, these values 
are converged with the high percentage decreasing to 16% 
while the low one increasing to 3.2%. 
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Fig.13. The response time for network N5. 
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Fig.14. Percentage of broadcasts per group for network N5.  
 

Figures 13 and 14 present the outperformance of the 
proposed scheme for different values of 1θ  (page access skew 
coefficient). It is important to say that the performance in 



terms of percentage of broadcasts per group is the same for 
each value of 1θ  at both schemes. Thus, it has been chosen 

indicatively the case of 1θ =0.0 to be presented.  
 
 

V. CONCLUSION 
 

A new distributed adaptive scheme for wireless push 
systems was proposed in this work. The novelty of the 
introduced scheduling framework has to do with the adoption 
of a distributed placing of autonomous learning automata. The 
proposed DIAS scheme seems to be more sensitive concerning 
the various client demands, by utilizing an autonomous 
adaptive mechanism for each different region-based client 
group. Moreover, DIAS introduced a more fair treatment of 
the less popular client requests, without sacrificing the system 
performance. This is proved by extensive simulations 
experiments that point out the superiority of the novel 
framework compared to the centralized one, in terms of 
response time and fairness. 
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