
A Novel Adaptive Framework for Wireless Push Systems based on
Distributed Learning Automata

V. L. Kakali, P. G. Sarigiannidis, Member, IEEE, G. I. Papadimitriou, Senior Member, IEEE, and A. S. Pomportsis

Abstract—A novel adaptive scheme for wireless push
systems is presented in this paper. In this wireless
environment two entities play the most important role: the
server side and the client side that is connected to the
system. The server side is responsible to broadcast an item
per transmission in order to satisfy the clients’ requests.
The performance of the server side depends on item
selections. Hence, the server broadcasts an item and the
clients are satisfied if the transmitted item was the desired
one. In this work, a set of learning automata try to
estimate the client demands in a distributed manner. More
specifically, an autonomous learning automaton is utilized
on each client group, since the clients are gathered into
groups based on their location. The output of each
automaton is combined in order to produce a well-
performed transmission schedule. Concurrently, a round
robin phase is adopted, giving the opportunity to the non-
popular items to be transmitted. In this manner, the
various client demands are treated fairly. The introduced
technique is compared with a centralized adaptive scheme
and the results indicate that the proposed scheduling
framework outperforms the centralized one, in terms of
response time and fairness.

Index Terms—Distributed Learning Automata, Fairness,
Locality of Demand, Wireless Push Systems.

I. INTRODUCTION

Data broadcasting has emerged as an efficient way of
delivering information over wireless networks (i.e. traffic
information, weather information, news distribution). In such
applications, client preferences are usually overlapping and
the broadcast of a single information item will likely satisfy a
large number of clients. The three major approaches for
designing broadcast schedules is the pull, the push and the
hybrid one. In pull systems, (e.g. [1, 2, 3, 4]), data items are
broadcast in response to explicit requests received from
clients. Pull can be used either for unicast or for broadcast.
When used for broadcast, pull is also referred to as interactive
or on-demand broadcast [5].

The advantage of these systems is their adaptive to dynamic
client demands. Though, they are not scalable for large client
populations as client requests will either collide with each
other or saturate the server. In push systems (e.g. [6, 7, 8]), the
server is considered to have an a-priori estimation of the client
demands and schedules its broadcasts according to these

estimates of the demand per information item. On the contrary
to the pull approach, the “pure” push systems provide high
scalability and client hardware simplicity but are unable to
operate efficiently in environments with a-priori unknown and
dynamic client demands.

The adaptive push system of [9, 10, 11] though, achieves
efficient operation in such environments using a learning
automaton [12] at the broadcast server in order to provide
adaptivity. The server conserves a database of the items that
are broadcast while the learning automaton contains the
server’s estimate of the demand probability for each item.
After each item broadcast, every satisfied client sends to the
server a feedback. Using the clients’ feedbacks, the server’s
automaton continuously adapts to the overall client population
demands in order to reflect the overall popularity of each data
item. Finally, hybrid systems (e.g. [13, 14, 15]) try to combine
the benefits of the pure-push and pure-pull approaches. In this
paper, we will focus on the adaptive push-based approach of
[9].

The adaptive push system of [9] uses a single centralized
automaton to adapt its scheduled broadcasts to the clients’
demands. Though, most applications are characterized by
locality of demand which means that clients are gathered into
groups, each one located at a different region. Members of
each group have similar demands for information items,
different from the demands of clients at other groups (e.g.
traffic information) while the size of each group (number of
clients per group) varies as there are groups of large
population and groups of small one. Thus, a centralized
automaton is not able to target on the explicit needs and
features of each group as it considers all the clients as a single
group.

The proposed scheme alters the operation of designing the
broadcast schedules by applying a distributed learning
automata scheme [16] instead of a centralised one. The
proposed DIstributed Automata Scheme (DIAS) framework
targets on accurate estimations regarding the clients’ demands
via a distributed operation of the applied automata. In this
manner, the scheme takes into account the locality of item
demands per group. Furthermore, the novel scheme focuses on
each group separately taking into consideration the size of
each group, regarding the choice of the forthcoming
broadcasts. This means that the server side tries to determine
the client demands per group by applying a learning
automaton on each group of clients distinctly, contrary to a
unique centralized learning automaton for the whole system.
This design leads to a more sensitive framework than the

centralized one, since the client demands are treated with an
efficient and fair way. Simulation results indicate that the
distributed nature of the proposed scheme results in better
performance in terms of response time and fairness than the
centralised one.

The distributed automata have been widely used in the
literature. Indicatively, it is mentioned their use on algorithms
for solving multi-agent markov decision processes [17], for
learning minimum delay paths in service overlay networks
[18], in distributed fuzzy logic processor training [19] and for
function optimization problems [20].

The remainder of the paper is organised as follows: Section
II presents previous schemes for the push approach, section III
analyzes the system architecture and presents the proposed
scheme. Simulation results are presented in Section IV.
Finally, Section V concludes the paper.

II. RELATED WORK
The method for data broadcasting in push systems presented

in [7] is based on two statements that optimize the system
performance: (a) schedules with minimum overall mean
access time are produced when the intervals between
successive instances of the same item are equal, (b) under the
assumption of equally spaced instances of the same items, the
minimum overall mean access time occurs when the server
broadcasts an item i with frequency being proportional to the
factor ()((1 ()) (1 ()))i i i ip l E l E l+ − , where pi is the
demand probability for item i, li is the item’s length, and E(li)
is the probability that an item of length li is received with an
unrecoverable error.

The algorithm of [7] operates as follows: The server
contains a database of K information items, and p is the vector
of the estimated probability demand per item. Assuming that t
is the current time and T(i) is the time when item i was last
broadcast, for each broadcast, the server selects to transmit the
item i that maximizes the cost function (objective function):

 2() (()) (1 ()) (1 ()) , 1 ii
i i

i

p
CF i t T i E l E l K

l
= − + − ≤ ≤ (1)

where pi is the demand probability for item i, li is the item’s
length, E(li) is the probability that an item of length li is
received with an unrecoverable error, T(i) is initialized to -1
and if the maximum value of CF(i) is given by more than one
items, the algorithm selects one of them arbitrarily. Upon the
broadcast of item i at time t, T(i) is changed so that T(i)=t.

The main disadvantage of this method is its lack of
adaptivity and thus its inefficiency in environments with a-
priori unknown client demands. The adaptive push system of
[9] achieves efficient operation in such environments using a
single Learning Automaton at the broadcast server in order to
provide adaptivity. After each item broadcast, every satisfied
client sends to the server a feedback (“vote”). Using the client
feedbacks-votes, the server’s automaton continuously adapts
to the overall client population demands in order to reflect the
overall popularity of each data item. The operation of the
centralised learning automaton is given by the equation below:

' ' '

' ' '

(1) () (1 ()) (() a), j

(1) () (1 ()) (() a)

j j j

i i j
i j

p k p k L b k p k

p k p k L b k p k
≠

i+ = − − − ∀

+ = + − −∑

≠

 (2)

 It holds that , a (0,1) L ∈ and ,
where K is the number of the server’s items, p

[]' 1, ...,() (a,1), i Kp k i∈ ∀ ∈
’ is the server’s

estimated demand probability vector, L is a parameter that
governs the speed of the automaton convergence and the role
of parameter a is to prevent the probabilities of unpopular
items from taking values in the neighbourhood of zero in order
to increase the adaptivity of the automaton. Upon reception of
the clients’ feedbacks, this number of feedbacks is normalized
in the interval of [0,1].

() 1b k
number of received feedbacks

total number of clients
= − is the system

environmental response that is triggered after the server’s kth
transmission.

In the remainder of the paper this method will be referred as
the “centralized system” and will be used for the comparison
and validation of the DIAS.

III. THE DISTRIBUTED AUTOMATA SCHEME (DIAS)

A. The System Architecture
The system consists of a base station and mobile clients.

The client topology is characterized by locality of demand. P
denotes the client population and G the number of groups that
are gathered into. The members of each group may demand M
information items. Clients are considered equipped with GPS
receivers. As nowadays many PDAs are typically equipped
with GPS receivers, there is no need for complex client
equipment [21, 22, 23, 24, 25].

The base station consists of one omni-directional antenna
and a database of G×M different items. The server side is also
equipped with G distributed automata (one for each group) in
order to adapt the broadcast scheduling to the explicit group
demands. The base station broadcasts the server’s data items
while clients respond (“vote”) to the server’s broadcasts.

Group A

Group E

Group CGroup D

Group B

server

BS

Fig. 1. The system architecture.

For the uplink communication, a CDMA coding has been
chosen [26, 27]. After the broadcast of an item that has been
expected from a client, the client’s software application sends
automatically its “vote” (i.e. one bit) to the base station using a
user-specific high-speed code (Long code). At the receiver end
(base station), signals are separated by using a correlator (rake
receiver) which only accepts signals energy from the specific
client’s long code and despreads its spectrum. Other co-user
signals remain spread because their spreading algorithm is
uncorrelated with the desired signal’s algorithm and they
appear as noise.

Broadcasts are organized into transmission frames. Each
frame comprises of three phases, the learning phase, the
calculation phase and the schedule phase. The system
architecture is depicted in Fig. 1.

B. The Learning phase

Each Learning Automaton contains the server’s estimate

,i gp′ of the demand probability ,i gp for each item i among the
set of the items that the server broadcasts for the specific

group g. Thus, for each group g, it holds that ,
1

' 1
M

i g
i

p
=

=∑ ,

where M is the number of items that refers to each group.
During the learning phase, the broadcast follows a round

robin manner sending each item once. Hence, in this phase,
the scheme gives to the clients the opportunity to be satisfied
at least once per frame. This action improves the fairness
factor of the system operation. The server executes GxM
broadcasts sending each item once without taking into account
the server’s estimate ,i gp′ of the demand probability and thus
balancing the percentage of broadcasts at each group. Figure 2
depicts the learning phase in system with two groups.

BS

server

broadcasts
all

items in
a round
robin

manner

Item 2(A)

Item M(A)

[item1(A), item2(A),…,itemM(A)]

Group A Item 1(A)

...

Group EItem 1(E)

Item
M(E)

Item 2(E)

...

[item1(E), item2(E),…,itemM(E)]

Fig. 2. The learning phase

After the transmission of item i of group g, each satisfied

client transmits a feedback (e.g. one bit), using Code Division
Multiple Access (CDMA) as described in subsection III.A.

After the reception of the feedbacks, the base station
decodes them and the server updates the distributed demand
probability vector gp′ according to the probability updating
scheme that is described below.

When there are satisfied clients, the probability of the
transmitted item i increases while the probabilities of all the
rest items decrease. Considering that the server’s
transmission is item i of group g, the probability vector

th
k

gp′ is
updated according to equation (3):

' ' '
, , ,

' ' '
, , ,

(1) () (1 ()) (()), j

(1) () (1 ()) (())

j g j g g j g

i g i g g j g
i j

p k p k L b k p k a

p k p k L b k p k a
≠

i+ = − − − ∀

+ = + − −∑

≠

 (3)

where []'

, () (,1), 1, ...,i gp k a i M∈ ∀ ∈ , , (0,1)L a∈ ,

() 1

 g k
number of satisfied clients of g

b
number of clients of g

= −
 , L is a parameter

that governs the speed of the automaton convergence while
parameter a prevents the probabilities of unpopular items from
taking values around zero, as some items even if unpopular
may be demanded by some clients. The parameter is the
system’s environmental response of group g after the
reception of the client feedbacks of group g. A value of
that equals one represents the case where no client feedback is
received.

()g kb

()g kb

The server is aware of the population of each group g
using the following mechanism: The server, which has a priori
knowledge of the geographic locations (co-ordinates) where
its services are offered, sends one control packet for each one
of these locations, asking of the clients that belong to this
location to send back a feedback. The client’s GPS receiver
detects its co-ordinates and the client sends its feedback as an
answer to the control packet that refers to its area. Then, the
server, using its long-code database, decodes the votes that are
the answers to each control packet and builds the groups based
on the decoded votes that received from each area.

A vector F of size equal to the number of groups G is
considered. After each broadcast, the number of received
feedbacks from the group g is added in F(g). At the end of the
learning phase, the value of the mean number of feedbacks per
group is stored in the 'F vector in order to be used for the

calculation phase as follows ' g

g

F
F

M
= .

C. The calculation phase

The number of broadcasts for each group of the next phase

is formed based on the formula below:

1

'

'

g

g G

g
i

F
S G

F
=

M= ⋅ ⋅

∑
, where gS is the number of the next

broadcasts dedicated to each group.
Based on the formula above the GxM broadcasts of the next
phase are distributed to the groups according to the proportion

of the mean number of feedbacks per group to the total

number of feedbacks (
1

'
G

g
i

F
=
∑).

BS

server

feedback 2(A)

feedback M(A)

[feedback1(A),
feedback2(A),…,feedbackM(A)]

Group A feedback 1(A)

...

Group Efeedback 1(E)

feedback M(E)

feedback 2(E)

...
Calculates the

number of
broadcasts for
each group for
the next GxM
broadcasts,

i.e.

S1 = …, S2 = …,
,…, SG = …

[feedback1(E),
feedback2(E),…,feedbackM(E)]

Fig. 3. The calculation phase.

D. The schedule phase

In this phase, the broadcasts are scheduled based on the
previously calculated S vector. According to S vector, a
number of broadcasts equal to sum(S) are scheduled. The
scheduling algorithm is defined as follows:

Scheduling Algorithm

//begin of scheduling algorithm

while (sum(S)>0)
 maximum = max(S);

 - selected group = the index of maximum in vector S

 - broadcast to the “selected group” the item i that
 maximizes the cost function CF presented below

 - update selected groupp′

 - S(selected group) = S(selected group) – 1

 end while

// end of the scheduling algorithm

The server selects to broadcast to the “selected group” the

item that maximizes the cost function CF(i) [7, 9] i

2
'
,

() (()) , 1 i
(1 ())

(1 ())
i g i

ii

p
CF i T R i M

l

E l

E l
= − ≤ ≤

+

−
 (4)

where T is the current time, R(i) is the time when item i was
last broadcast, is the server’s estimated demand
probability for item i, l

'
,i gp

i is the item’s length, E(li) is the
probability than an item of length li is received with an
unrecoverable error and M is the number of the data items of
group g. For items that have not been previously broadcast
R(i) is initialized to -1.

Figure 4 displays the schedule phase as described above in
system with two groups.

BS

server

feedback i(A)

Group A Item i(A) Group Eitem j(E)

feedback j(E)

Constructs
the schedule
and begins

broadcasting

1 2 Sum(S)
Group E Group A Group A

item k(E) item n(A) item z(A)

...

...

...

broadcast schedule

Fig. 4. The schedule phase.

IV. THE SIMULATION ENVIRONMENT

A. Simulation Environment
The server contains a database of K=G x M. the item length

l is considered to be equal to the unit for each item for
simplicity reasons, as the item length is not an affecting issue
for the distributed simulation environment. A population of P
clients is considered. Clients are grouped into G groups with
each group being located at a different region and having
different item demands. In order to model groups of clients
with different group sizes, the size of each group is computed
via the Zipf distribution. Thus, the number of clients in group
x, Size(x), 1 x G≤ ≤ , is:

1
() Size x c P

x

θ
= ⋅⎛ ⎞

⎜ ⎟
⎝ ⎠

 (5)

where []1
, 1..

1
k

c k

k

θ= ∈
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
G and θ is a parameter

named skew coefficient. For 0θ = , the Zipf distribution
produces equally-sized groups while for large values of θ , the
Zipf distribution produces increasingly skewed patterns.

Any client belonging to group x is interested in the same
subset xK of server’s data items. All items outside this subset
have a zero demand probability at the clients of the group.
Moreover, []1 2 1, 2 1.. , x1 2 , x xK x x G xK ∀ ∈ ≠≠ , which
means that there are not any common demands between any
two clients belonging to different groups.

In each subset, the client demand probability for each
item in place x in that subset, is computed also via the Zipf

xp

distribution. This distribution has also been used in other
papers that deal with data broadcasting [6, 7, 9, 11]

 11
xp c

x

θ

= ⎛ ⎞
⎜ ⎟
⎝ ⎠

 (6)

where []

k

 1 x
1

c = , k 1..NumK
1

k

θ ∈
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
, is the

number of items that comprises the subset

xNumK

xK , and 1θ is the
skew coefficient. After each broadcast, the satisfied clients
(the ones that were waiting for the broadcast item) refresh
immediately their demands while the “unsatisfied” clients
persist to their demands until they get satisfied. Finally, a
number of G distributed automata are utilized at the server, as
they are described in section III.

The broadcasts are subject to reception errors, with
unrecoverable errors per instance of an item occurring,
according to a Poisson process with rate λ . Thus,

 1E e λ−= − is the probability that an item is received with an
unrecoverable error.

The simulation runs until the server broadcasts
items. The overhead due to the duration of the feedbacks and
the signal propagation delay is defined via the parameter

.

Broad

Ouh
The DIAS is compared with the centralized system of [9]

where the server uses one centralised learning automaton to
schedule its forthcoming broadcasts.

The performance of the compared schemes is measured in
terms of response time and percentage of broadcasts per
group. The response time is the mean time that passes until the
client receives one item that expects and is defined as follows:

 =

 j
j

total time of the Broad broadcasts
ResTime

number of satisfied broadcasts of client
, where

. In this manner, the response time of the entire

system is given by

1 j P≤ ≤

1

P

j
j

ResTime

P
=
∑

. Moreover, the percentage

of broadcasts per group is defined as the number of the
server’s broadcasts of items that concern each group upon the
total number of the server’s broadcasts and is given by:

100j
j

num of broadcast items of group
PercBroad

Broad
= ⋅ , where

. 1 j G≤ ≤

B. Simulation Results
The experiments are performed in a simulator coded in

Matlab. The simulation results presented in this section are
obtained with the following values to the parameters: P=1000,
Broad=100000, , 310Ouh −= 0.1λ = , L=0.15 and a= 410 − .
Table 1 summarizes the characteristics of the networks that

have been simulated while figures 5-14 depict the simulation
results of these networks.

Table 1. The characteristics of the different simulation
environments.

Network G M θ 1θ
N1 [5...20] 5 0.9 0.5
N2 [5…20] 180/G 0.9 0.5
N3 10 [5…20] 0.9 0.5
N4 20 5 [0.0...1.0] 0.5
N5 20 10 0.9 [0.0…1.5]

Figure 5 depicts the response time of network N1 as the
number of groups varies. In these figures the number of items
per group (M) is stable and equal to 5, while the number of the
groups that the clients are gathered into takes values in the
interval of 5 to 20. For instance, when the number of groups is
20, the total items are 5×20 = 100. Obviously, the proposed
DIAS scheme achieves better performance than the centralised
one for different number of groups.

5 10 15 20
10

20

30

40

50

60

70

80

number of groups (G)

re
s

p
o

n
s

e
 t

im
e

centralized system
DIAS

Fig.5. The response time for network N1.

In Figure 6, the percentage of broadcasts per group of the
same network is presented for three different values of system
groups. In all the three cases, the distributed scheme seems to
be more fair than the centralized one in terms of percentage of
broadcasts per group. In the centralized system, the large
populated groups (e.g group 1 at fig.6.a, 6.b, 6.c) have much
higher percentage of broadcasts at the expense of the small
ones which have very low percentage of broadcasts. For
example, the percentage of the large group 1of fig 6.a. reaches
the 35% of the total server’s broadcasts while the percentage
of group 10 which is the smaller one is only 2.5%. In the
distributed system, the server’s broadcasts are scheduled in a
more fair matter. This mainly happens because the learning
phase is utilized according to a round robin manner.
Especially, the values of the percentage per group which are
very low at the centralized system increase, whereas the ones
that are high decrease. Thus, all the values of the percentage
approach to each other and the system becomes more fair.

1 2 3 4 5
0

5

10

15

20

25

30

35

40

45
pe

rc
en

ta
ge

 o
f b

ro
ad

ca
st

s
pe

r
gr

ou
p

(a)

1 5 10
0

5

10

15

20

25

30

35

group

(b)

1 5 10 15
0

5

10

15

20

25

30

35
(c)

centralized system
DIAS

Fig.6. Percentage of broadcasts per group for number of
groups equal to (a) 5, (b) 10, (c) 15 for network N1.

Figure 7 shows the response time of network N2 versus
different values of G (different number of groups) in an
environment where the total number database items is stable
and equal to 180 independent of the number of groups. Here,
the number of items per group M is equal to 180/G. Thus, for
number of groups equal to 5, 10 and 15, the number of items
per group is 36, 18 and 12 respectively. The response time of
the proposed system is significantly lower then that of the
centralized one. It is also noticeable the fact that the response
time of the distributed system is stable and independent of the
number of groups whereas the response time of the centralized
one increases with the raise of the number of groups.
Apparently, for large values of groups, the centralized system
finds difficulty in adapting to the varying demands of many
groups. Contrary, the distributed system achieves more
accurate estimations of the client demands independent of the
number of groups as each automaton targets on a specific
group.

5 10 15 20
95

100

105

110

115

120

125

number of groups (G)

re
s

p
o

n
s

e
 t

im
e

centralized system
DIAS

Fig.7. The response time for network N2 .

Figure 8 shows the percentage of broadcasts per group of
the same network N2 for three values of G (G=5, G=10,
G=20). In all the three cases, it stands that the distributed
scheme is more fair than the centralized one as the values of
the percentage of the groups try to approach to each other.

1 2 3 4 5
0

5

10

15

20

25

30

35

40

45

50

pe
rc

en
ta

ge
 o

f b
ro

ad
ca

st
s

pe
r

gr
ou

p

(a)

1 5 10
0

5

10

15

20

25

30

35

40
(b)

1 5 10 15 20
0

5

10

15

20

25

30

group

(c)

centralized system
DIAS

 Fig.8. Percentage of broadcasts per group for number of
groups equal to (a) 5, (b) 10, (c) 20 for network N2.

5 10 15 20

30

50

70

90

110

130

number of pages per group (M)

re
s
p

o
n

s
e
 t

im
e

centralized system
DIAS

Fig.9. The response time for network N3.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

group

p
e

rc
e

n
ta

g
e

 o
f

b
ro

a
d

c
a

s
ts

 p
e

r
g

ro
u

p

centralized system
DIAS

Fig.10. Percentage of broadcasts per group for network N3.

Figures 9 and 10 confirm the superiority of the proposed
scheme at the response time as well as the fairness in terms of

the percentage of broadcasts for different values of M (number
of items per group). It is worth mentioning that the
performance in terms of percentage of broadcasts per group is
the same for each value of M at both schemes. Thus, it has
been chosen indicatively the case of M=10 to be presented.

0 0.2 0.4 0.6 0.8 1
55

60

65

70

75

80

85

group size skew coefficient θ

re
s

p
o

n
s

e
 t

im
e

centralized system
DIAS

Fig.11. The response time for network N4.

Figure 11 depicts the response time versus different values

of the group size skew coefficient θ of network N4. Observing
the figures, it is obvious that as the θ increases the centralized
system follows a growing progress, while the distributed
scheme follows a significant decrease. More specifically, for
small values of θ (θ <0.4) where the group sizes have very
close values, the two systems have similar behavior with the
centralized system excelling marginally. Though, for values of
θ greater than 0.4, the Zipf distribution produces increasingly
skewed patterns. In such a realistic environment with unequal
group sizes, the performance of the distributed system
outperforms that of the centralized one. Indeed, as the values
of θ increases, the performance of the distributed system is
enhanced, a fact that does not stand for the centralized system
where the performance is degraded.

1 5 10 15 20
0

5

10

15
(a)

pe
rc

en
ta

ge
 o

f b
ro

ad
ca

st
s

pe
r g

ro
up

1 5 10 15 20
0

10

20

30

(b)

group

centralized system DIAS

Fig.12. Percentage of broadcasts per group for group size
skew coefficient θ to (a) 0.4, (b) 1.0 for network N4 .

In Figure 12, it is presented the percentage of broadcasts
per group of N4 for two values of θ (θ =0.4, θ =1.0). In both
cases, it holds that the distributed scheme is more fair than the
centralized one. This phenomenon can be explained as the
values of the percentage broadcasts of the groups try to
approach to each other in compare with the centralized one
where the first large group has the majority of the server’s
broadcasts at the expense of the other ones. It is worth
mentioning that the lack of fairness at the centralized scheme
is more intense for large values of θ because the group size is
intensively skewed. The above is revealed in Figure 12.b.
where θ =1.0 and the percentage of the first group with
Size(1) = 278 is 32% while the percentage of the last one with
Size(20) = 14 is 1.2%. For the distributed system, these values
are converged with the high percentage decreasing to 16%
while the low one increasing to 3.2%.

0 0.5 1 1.5
95

100

105

110

115

120

125

130

135

140

page access skew coefficient θ1

re
sp

on
se

 ti
m

e

centralized system
DIAS

Fig.13. The response time for network N5.

1 5 10 15 20
0

5

10

15

20

25

30

 group

pe
rc

en
ta

ge
 o

f b
ro

ad
ca

st
s

pe
r g

ro
up

centralized system
DIAS

Fig.14. Percentage of broadcasts per group for network N5.

Figures 13 and 14 present the outperformance of the
proposed scheme for different values of 1θ (page access skew
coefficient). It is important to say that the performance in

terms of percentage of broadcasts per group is the same for
each value of 1θ at both schemes. Thus, it has been chosen

indicatively the case of 1θ =0.0 to be presented.

V. CONCLUSION

A new distributed adaptive scheme for wireless push
systems was proposed in this work. The novelty of the
introduced scheduling framework has to do with the adoption
of a distributed placing of autonomous learning automata. The
proposed DIAS scheme seems to be more sensitive concerning
the various client demands, by utilizing an autonomous
adaptive mechanism for each different region-based client
group. Moreover, DIAS introduced a more fair treatment of
the less popular client requests, without sacrificing the system
performance. This is proved by extensive simulations
experiments that point out the superiority of the novel
framework compared to the centralized one, in terms of
response time and fairness.

VI. REFERENCES

[1] D.Aksou and M.Frankin, “RxW: A Schedualing

Approach for Large-Scale On-Demand Data Broadcast”,
ACM/IEEE Transactions on Networking vol.7, no.6,
pp.846-860, December 1999.

[2] W. Sun, W. Shi and B.Shi, “A Cost Efficient Scheduling
Algorithm of On-Demand Broadcasts”, Wireless
Networks, vol.9, no.3, pp.239-247, May 2003.

[3] Xiao Wu and Victor C. S. Lee, “Preemptive Maximum
Stretch Optimization Scheduling for Wireless On–
Demand Data Broadcast”, IEEE Proceedings of the
International Database Engineering and Applications
Symposium, 2004.

[4] Peter Triantafillou, R. Harpantidou and M. Paterakis,
“High Performance Data Broadcasting Systems”, Kluwer
Mobile Networks and Applications 7, 279–290, 2002.

[5] Aksoy, D. Leung, M.S.-F, “Pull vs push: a quantitative
comparison for data broadcast”, IEEE GLOBECOM '04,
vol.3, pp 1464- 1468.

[6] S. Acharya, M Franklin, and S.Zdonik, “Dissemination-
based data delivery using broadcast disks”, IEEE Pers.
Commun., vol. 2, pp.50-60, Dec. 1995.

[7] N.H.Vaidya and S.Hameed, “Scheduling Data Broadcast
In Asymmetric Communication Environments”, Wireless
Networks, vol.2, no.3, pp.171-182, May 1999.

[8] E.Yajima, T. Hara, M. Tsukamoto, S. Nishio,
“Scheduling and caching strategies for correlated data in
push-based information systems”, ACM SIGAPP Applied
Computing Review, Vol. 9 , Issue 1, pp. 22-28, 2001.

[9] P. Nicopolitidis, G. I. Papadimitriou and A. S.
Pomportsis, “ Using Learning Automata for
Adaptive Push - Based Data Broadcasting in
Asymmetric Wireless Environments ”, IEEE
Transactions on Vehicular Technology, vol.51, no.6,
pp.1652-1660, November 2002.

[10] P.Nicopolitidis, G.I.Papadimitriou and A.S.Pomportsis,
“On the Implementation of a Learning Automaton-based
Adaptive Wireless Push System”, in Proceedings of
Symposium on Performance Evaluation of Computer and
Telecommunication Systems 2001 (SPECTS’01), July 15-
19, 2001, Orlando, USA, pp.484-491.

[11] P. Nicopolitidis, G. I. Papadimitriou and A. S.
Pomportsis, ”Multiple Antenna Data Broadcasting for
Environments with Locality of Demand”, IEEE
Transactions on Vehicular Technology, vol.56, no.5,
pp.2807-2816, September 2007.

[12] K. S. Narendra, M.A.L. Thathachar, “Learning
Automata: An Introduction”, Prentice-Hall, New Jersey,
1989.

[13] N. Vlajic, C.D. Charalambous and D.Makrakis,
“Performance Aspects of data Broadcast in Wireless
Networks with User Retrials”, IEEE/ACM Transactions
on Networking, vol.12, no.4, pp.620-633, August 2004.

[14] C.L.Hu and M.S Chen, “Adaptive Multichannel Data
Disemination:Support of Dynamic Traffic Awareness and
Push-Pull Time Balance”, IEEE Transactions on
Vehicular Technology, vol.54, no.2, pp.673-686, March
2005.

[15] Chih-Lin Hu and Ming-Syan Chen, “Adaptive Balanced
Hybrid Data Delivery for Multi-Channel Data Broadcast”,
IEEE International Conference on Communications,
2002, vol.2, pp. 960-964.

[16] M. A. L. Thathachar, P. S. Sastry, “Networks of Learning
Automata: Techniques for Online Stochastic
Optimization”, Kluwer Academic Publishers, 2004.

[17] F. Abtahi, M. R. Meybodi, “Solving Multi-Agent Markov
Decision Processes using learning automata”, 6th
International Symposium on Intelligent Systems and
Informatics, 2008, pp. 1-6.

[18] Hong Li, L. Mason, M. Rabbat, “Learning Minimum
Delay Paths in Service Overlay Networks”, 7th IEEE
International Symposium on Network Computing and
Applications, 2008, pp. 271 – 274.

[19] E. Ikonen, K. Najim, “Use of learning automata in
distributed fuzzy logic processor training”, IEE
proceedings of control theory and applications,
1997, vol. 144, no.3, pp. 255-262.

[20] S. Ikebou, F.Qian, H.Hirata, “A Parallel Distributed
Learning Automaton Computing Model for Function
Optimization Problems”, Trans. IEE of Japan, vol. 121-C,
no.2, Feb., 2001.

[21] K. Schreiner, “Where We At? Mobile Phones Bring GPS
to the Masses”, IEEE Computer Graphics and
Applications, vol.27, issue 3, p. 6-11, May-June 2007.

[22] N. Ueda, Y. Nakanishi, S. Matsukawa and M. Motoe,
“Developing a GIS Using a Mobile Phone equipped with
a Camera and a GPS, and its Exhibitions”, IEEE
Proceedings of the 24th International Conference on
Distributed Computing Systems Workshops 2004
(ICDCSW’ 04).

[23] Y. Nakajima, H. Shiina, S. Yamane and T. Ishida,
“Disaster Evacuation Guide: Using a Massively
Multiagent Server and GPS Mobile Phones”, IEEE
Proceedings of the 2007 International Symposium on
Applications and the Internet (SAINT’ 07).

[24] R. Matos, D. F. Santos, J. E. Sanguino and A. Rodrigues,
“A GPS-based Mobile Coordinated Positioning System
for Firefighting Scenarios”, Proceedings of the First
Mobile Computing and Wireless Communication
International Conference, MCWC2006, p. 209-214.

[25] C. E. Palazzi, “Buddy-Finder: a Proposal for a Novel
Entertainment Application for GSM”, IEEE
Communications Society Globecom 2004 Workshops, p.
540-543.

[26] K. S. Gilhousen, I.M. Jacobs, R.Padovani, A.J. Viterbi,
L. A. Weaver, J. and C. E. Wheatley III, “On the capacity
of a Cellular CDMA System”, IEEE Trans. on Vehicular
Technology, Vol.40, No.2, May 1991.

[27] C.Y.Lee, “Overview of Cellular CDMA”, IEEE Trans.
on Vehicular Technology, Vol.40, No.2, May 1991.

	The System Architecture
	Simulation Environment
	Simulation Results

